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The mathematical techniques used within Computer Aided Design soft-
ware for the representation and calculation of surfaces of objects are de-
scribed. First the main techniques for dealing with surfaces as computa-
tional objects are described, and then the methods for enquiring of such
surfaces the properties required for their assessment and manufacture.
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Notation Lower case letters are used to denote scalars. xz, y and 2 are
coordinates in IR®, u and v are coordinates in parameter space. f, ¢ and
h are scalar functions. Scalar expressions are bracketted by round brackets
(). Greek letters are usually scalar functions, except for a and 6, which are
angles, and p which is a radius.

Upper case letters are used to denote vectors or, occasionally, matrices.
P denotes a point, and N a surface normal vector. Point-valued or vector-
valued expressions are bracketted by square brackets [ |. Square brackets
are also the convention for the vector triple product (4,B,C]|=[A x B]-C

Unit vector expressions are denoted by the use of angle brackets ( ), or
by the notation N.
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1. SURFACE DEFINITIONS

In data reduction and similar numerical activities, the word surface is some-
times used loosely to dramatize the behaviour of some function, and the
surface equation with which most generalist mathematicians will be most
comfortable is the simple form

z = f(=z,y) (1.1)

but numerical geometers working in the application of computing to design
and manufacture soon found that this equation did not capture some of the
most fundamental properties of manufactured artifacts.

The main problem was that equation (1.1) is firmly locked within one
coordinate system. Rotating such a surface definition through a few degrees
to a new position will in general not give a new definition of the same form
as the old. We required surface descriptions which were closed (i.e. merely
involved changes of coefficient values) under such operations as solid body
rotations.

Those involved in computer graphics, who wanted to draw perspective pic-
tures, preferred representations which were closed under perspective trans-
formations.

In response to those needs, three generalizations have been used.

The first is the symmetric function of the coordinates.

f(z,y,2) =0. (1.2)

This form must have been discovered almost as soon as Descartes invented
coordinates, and it has been the form in which the quadrics have been
expounded ever since, in such text-books as Cohn (1961), McCrea (1960)
and Eisenhart (1960).

The golden age of algebraic geometry in the mid- to late-1800s discovered
all that was to be known about surfaces of this form when f was a polynomial
function, and much of their knowledge still stands us in good stead today.
See Book II of Coolidge (1963) for a good flavour of algebraic geometry.

This type of surface has been the main tool for those numerical geometers
who have been representing machined artifacts, which are mainly bounded
by surfaces which are plane or quadric, with the occasional torus. Such
surfaces have fairly simple analytic equations.

The second is the parametric form

r = fl(u,v)a
Yy = f2(u7v)a (13)
z = fg(u,v).

This was devised by Gauss (1828) in his studies of mapping.
This form of surface has been the main tool used by those of us who have
had to deal with smoothly flowing aesthetic shapes, such as those bounding
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aircraft, cars, ships, shoes or consumer articles such as hair-driers or electric
shavers. Their main attraction is that it is fairly simple to make a piecewise
definition, whereby one set of coeflicients can be used in one part of the u,v
domain, another set in another. You can change the shape of the rear fender
without altering the front.

The third is a form which has appeared in own own generation. It does
not have a single simple equation in terms of coordinates, but instead has
a procedural definition, which says that a piece of surface lies within some
piece of space. If you want to nail it down more tightly, an algorithm is
available which divides the piece you have into smaller pieces, each of which
lies within a smaller piece of space.

2. Analytic surfaces

This approach treats a bivariate point set definition as the set of zeros of
some function of position

f(P)=0.

Because we are concerned with real geometry in the colloquial sense, we
deal with functions whose coefficients are real, and which map from R to R

A linear function gives a plane. Polynomial functions of higher order
give, in general, curved surfaces. Quadratic functions give a family of sur-
faces called the guadrics, which includes the sphere, the cylinder, the cone,
ellipsoids, and various paraboloids and hyperboloids. The first three of these
are called the naturel quadrics, and are important in that faces of machined
objects are frequently of this form. In fact the whole technology of the
representation of machined parts, whose complexity is primarily in the way
large numbers of faces interact with each other, was built for at least its
first ten years on natural quadrics only. In that context the faces are seen as
boundaries between material and ‘outside’, and so the function is regarded
as defining the half-space

f(P)<o0

rather than just the zero-set.
This section is concerned with faces in small numbers, and we do not
distinguish particularly between the two sides of a surface.

Differential properties Consider a point P lying in a surface f. Because
the surface is bivariate, there are directions in which we can move from P
while remaining in the surface. Let such a direction be T, represented by a
tangent vector.

Thus for small displacements such as ds,

F(P+Tds)=0.
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This can be expanded as a local Taylor series
f(P)+(df/daTy +df/dyTy +df/dzT;)ds = 0.
The term in brackets is just an inner product, which has to be zero
df/dP-T =0.

Now T is any tangent vector, and df /dP, which is a triple and can therefore
be interpreted as a vector, must lie in the direction perpendicular to the
surface, because its inner product with any tangent is zero. It is called the
surface normal, and will usually be denoted by N.

Sometimes it is convenient to represent the direction rather than the mag-
nitude of N. For this we take the vector in the same direction as N, but of
unit magnitude. This is called the unit surface normal, and is denoted by
N.

If the function f is such that N is of unit magnitude near a point P of
the surface, the value of f measures distance from the surface locally.

The second derivatives d?f/dP? form a matrix which encapsulates the
local curvature behaviour. This is most obvious if we think of it as

i (ir)

dN

dP
so that the inner product with any displacement 6 P gives the corresponding
change in surface normal.

which can be written as

2.1. Definitions

The most frequent form of analytic surface definition is by the specific ge-
ometric properties of the specific surface equation. For example, the centre
and radius of a sphere, the vertex and semi-angle of a cone, a point on and
the normal vector of a plane.

In a software system which is known to deal only with planes and quadrics,
this initial data can be converted into the equivalent coefficient matrix of
the homogeneous quadratic form.

[z y =z 1]

PiA;PI = 4 B

=0. (2.1)

_ N e R

BT 1

Any more general system needs to provide a procedural interface, which
will be described in more detail under Interrogations, below. There is a
trade-off between holding data in the form in which it was first supplied,
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A) (B)
Fig. 1. Liming blends.

thus making editing more transparent, and doing as much pre-processing as
possible to speed subsequent enquiries.

2.2. Blends and fillets

For the most part the analytic shapes which are actually defined are of low
order, the highest being quartic for the torus. There is one exception to
this: where blending surfaces are defined by an algebraic combination of the
functions of the surfaces which they join.

The principle is a simple one, articulated by Liming in the late 1930s, but
building on algebraic geometry ideas from the mid 19th century.

Let f = 0 and ¢ = 0 be equations of two intersecting curves in two
dimensions, and let A = 0 be the equation of a curve running close to their
intersection. Then for any general value of a parameter A, fg — Ah%2 =0 is
the equation of another curve, which lies tangent to each of f and g at its
intersection with h.

If f, g and h are all of the same order, n, the order of the combination is
2n. In Liming’s work n was 1, and the blend curves conics.

If f, g and h are all normalized so that df/dP is of unit length locally, a
value of A of about 1 gives an intuitive fillet. Values nearer to 0 give a blend
going closer to the intersection of f and g, and larger values give a blend
which lies closer to h.

The same principle applies where f, ¢ and h are surface equations in three
dimensions. The blend, articulated by several groups of researchers almost
simultaneously (Middleditch and Sears 1985; Rockwood and Owen, 1985;
Hoffman and Hopcroft, 1986; 1987) is now a surface tangent to the base
surfaces f and g all along their respective intersection curves with h.

Such surfaces are best described as blends, as the term fillet is usually
taken to mean a surface generated by a ball rolling along the intersection
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(except by numerical geometers, who prefer to use the term fillet more gen-
erally).

The rolling ball fillet is a much harder shape to represent. We have to
determine the locus of the ball’s centre, which is the intersection of two
surfaces offset from the base surfaces by the radius of the ball, and then
construct the envelope of the ball as it travels along this locus. All these
operations are in fact closed in the universe dealt with by algebraic geometry,
but the orders of the objects involved escalate inconveniently. The equations
also tend to have spurious parts to their solutions which do not correspond
to the intended shape.

For example, the offset of an ellipse in 2D is a curve of order 8, which
includes both inwards and outwards offsets. These two parts are not sep-
arable, in general, by factorization of the eighth-order equation into two
fourth-order factors.

3. Parametric surfaces

Although most sculptured surface software deals with analytic surfaces to
some extent, if only for planes, it is the parametric representation which is
the workhorse.

In this form, the surface is regarded as a mapping from a parameter
plane into R2. The computational representation of the surface is the set of
coeflicients of the mapping.

The most general case is thus

P =F(C:u,v), (3.1)

where v and v are the parameters, coordinates in the parameter plane, and
C is the set of coefficients.

Differential properties The defining equation of a parametric surface can
be differentiated with respect to the parameters. The two partial derivatives
dP/du and dP/dv lie tangent to the surface. This can be seen from the
definition of the derivative as the limit of a difference.

dP -
P P(u + éu,v) — P(u,v)
du  su—0 ou

(3.2)

Both of the points in this equation lie in the surface, and the secant vector
between them becomes a tangent in the limit.

The cross product of the two derivative vectors lies perpendicular to the
surface, and is called the surface normal vector, N.

N = dP/du x dP/dw. (3.3)
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The unit vector in the same direction as N is called the unit surface
normal, N.

The second derivatives with respect to parameter provide information
about the curvature of the surface. This is evident from the fact that the
derivative of N with respect to parameter involves the second derivatives of
P.

Definitions Although the general form of parametric surface equation is as
quoted in equation (3.1), the subset actually used is much smaller. There
are only two forms at all widely used for primary definition, the piecewise
polynomials, and the transfinite interpolants.

3.1. Functions linear in the coefficients

The first limitation is to functions of v and v, linear in the coeflicients.

P = Zci¢i(uav), (34)

where the ¢; are scalar valued functions and the C; are vector-valued coef-
ficients.

There have been various attempts to use shape parameters, which are
coefficients taking a nonlinear role, notably the superellipses of the Lockheed
Master Dimensions system, and the v-splines of Nielson (1974), but such
coefficients are not found to be particularly easy to use, except possibly for
generating academic dissertations.

3.2. Points and vectors

It is useful at this point to distinguish between points and vectors. Both are
represented by triples of coordinates, but they transform differently under
solid body transformations. If we change coordinate system, the coordinates
of a point P are transformed to

P=M-P+0, (3.5)

where M is a 3 x 3 orthonormal matrix and O is a point.
A vector, typified by the displacement from one point to another, is trans-
formed according to

PP=M P (3.6)

We assume that the set of basis functions is independent, so that there is
no set of nonzero scalar coefficients a; such that . a;¢;(u,v) = 0.

There can then be at most one subset of the ¢; such that the sum of the
functions within this subset is identically equal to 1. All the bases of interest
do have such a subset. Call these functions the p; and the remainder the ;.
Let the coeflicients of the p; be called R; and of the ; S;.
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Then the equation for a general point of the surface can be written

P(u,v) = Z R;pi(u,v) + Z Sivi(u, v). (3.7)

Now suppose that we apply a point transformation to the R; and a vector
transformation to the S;.

P'(u,v) = Z(M -Ri + O)pi(u,v) + Z M - S;pi(u,v)
M- " Ripi(u,v) + O pi(u,v) + M- > Sips(u,v)

M- (Z Rpi(u,v) + Sivi(u, v)) +0 Z pi(u,v)
M - P(u,v) + O. (3.8)

i

This is exactly the transformation of P{u,v) as a point, which is what we
require for the surface representation to be closed under solid body trans-
formation.

3.3. Tensor product surfaces

Even within the limitation to scalar functions with point and vector coefli-
cients, the choice of basis functions ¢ is dominated by the tensor products
where the coefficients are viewed as forming some kind of rectangular grid:

P =Y Cijgi(u);(v). (3.9)

The mainstream of development can be followed by considering what uni-
variate functions are applied within a tensor product. This has the great
convenience of allowing the surface equations to be explained in terms of
curves,

P =Y Ci¢i(u) (3.10)

because the surface equation can be regarded as two nested summations.
The inner one describes a curve swept out by a point moving as u changes,
the outer the way that this curve sweeps out a surface as v changes.

3.4. Precewise polynomials

The first serious work used Hermite cubics within foursided patches consid-
ered as independent entities to be stitched together with various degrees of
continuity. Ferguson (1965; 1993) built a system which enabled continuity
of the first derivative to be achieved between patches which shared corner
data. In fact he initially omitted some of the components of the full ten-
sor product, but these were later added to the APTLFT-FMILL numerical
control programming system very widely used in the 1970s and early 1980s.
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Fig. 2. Hermite functions and a Hermite curve.

The basis functions were
fo(w) =1—3u?+ 2u3,
fi(u) = 3u? - 248,
go(U) = U(]. - ’U,)Z,
g(u) =—(1-u)u

(3.11)

In this scheme, the coeflicient of fy in a curve is the initial point, u = 0,
that of f; the final point, v = 1. The coefficient of gg is the first derivative
of position with respect to parameter at u = 0, of g; the first derivative
at u = 1. The finite piece of curve defined in this way is the image of the
interval from 0 to 1. In this context the distinction between open and closed
intervals is not significant. Similarly, the piece of tensor product surface is
the image of the unit square of parameter plane.

Clearly, with coeflicients of this form, pieces of curve which will join with
either continuity of position only or continuity of position and first derivative
can easily be defined. This is achieved by having adjacent pieces share
defining data.

In the surface context, the ff products have as coeflicients the four cor-
ners of the patch, the fg products the corner values of the derivatives with
respect to u, and the gf products the derivatives with respect to v. The
99 products which Ferguson initially omitted have as coeflicients the mixed
partials d2P/du dv.

The success of this scheme must not be understated. Hundreds of millions
of dollars worth of aerospace parts have been machined successfully with this
mathematics. However, it had two problems: using different magnitudes for
the first derivative vector would give different curves, and it was not obvious
how to choose the right magnitude first time; and that the mixed partials
were even harder to choose.

One solution to both these problems was published by de Boor in 1962. He
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Fig. 3. Hermite surface definition.

(A) (B)

Fig. 4. Bernstein functions and a Bernstein curve.

used interpolating cubic splines as differentiation operators to determine all
the required derivatives, starting from an array of points to be interpolated.
The other was devised independently by de Casteljau and by Bezier, both
working in the French automobile industry (Bezier 1971).
They used, instead of the Hermite basis, the Bernstein basis

6 . .
(u) = ——— ) (1 —w)®", i=0,...,3. 3.12
o) = (=) - (3.12)

The coefficients of these functions in the curve context are a sequence of
points, usually thought of as forming an open polygon, usually called the
control polygon. This has the same end-points as the curve itself, and is
tangent to the curve at the end-points. Further, the curve has an inflexion
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Fig. 5. Bernstein surface definition.

only if the polygon does. (It can also have two inflexions if the curve has a
loop.)

In the surface context the coefficients form a rectangular network of points
whose corners are the corners of the patch, and whose edges are the control
polygons of the edges of the patch.

This approach solved both the vector magnitudes and the second deriva-
tives problems. The obviously right vector magnitude was normally that
which made all three of the polygon legs about the same length, but vectors
could be shortened predictably to avoid inflexions; and a smoothly laid out
control network would give good second derivatives.

It also made it possible for higher- or lower-order polynomials to be used
with facility. The originators found useful transformations which permitted
a part of a patch, trimmed by a cubic in uv-space to be expressed as a single
patch, but of higher order.

However, the assembly of an array of patches to model, for example, a
car door with a feature line running along it, was still a detailed task, which
had to be performed with great accuracy if discontinuities of tangent plane
were not to creep in.

3.5. B-splines

The next step in the development was a combination of the Bernstein and
spline ideas. Bernstein brought legitimacy to the idea that control points
need not be interpolated, splines the idea that a complete surface could
be regarded as a single entity with piecewise basis functions, rather than
a collection of independent pieces. The Ph.D. dissertation of Riesenfeld,
supervised by Gordon (see Gordon and Riesenfeld, 1974) explored the use
of the B-spline functions, first described much earlier by Schoenberg (1946),
as analogues for the Bernstein polynomials.

B-spline functions are well explained in de Boor (1987). A univariate
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B-spline function is a piecewise polynomial defined over a particular par-
titioning of the real line into segments over each of which the function is
polynomial. The values at which these segments meet are called knots.

(A) (B)

Fig. 6. Quadratic and cubic B-spline basis functions.

A B-spline function has finite support, i.e. it is nonzero only within a finite
abscissa interval. It is strictly positive in the nonzero region. A nondegen-
erate B-spline has the maximum continuity possible with polynomial pieces
of a given order, and minimum support. These properties are sufficient to
define the function within a scaling factor, and the scaling factor for curve
definition purposes is chosen so that the sum of all the nonzero B- splines
at any given abscissa is exactly unity. As shown above, this partition of
unity property is required so that when all the coefficients are transformed
as points under a solid body transformation, the shape of the curve remains
invariant.

By taking the limit as one of the pieces of abscissa becomes shorter and
shorter, the concept of coincident knots (or even multiple knots) is obtained.

l ] I

Fig. 7. Some degenerate B-splines.
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B-splines with coincident knots can have discontinuities of lower than
expected derivative, and narrower support regions.

A B-spline curve may be compared with a high-order Bernstein curve.
The individual polynomial pieces for the B-spline are of lower order, but
there are more of them. A change in the position of any one control point
will, in general, affect only part of the B-spline curve, but all of the Bernstein
curve.

A B-spline curve may also be compared with a collection of Bernstein
curve segments. There are, in general, fewer control points for the same
curve regarded as a B-spline. Moving one of the B-spline control points
alters more of the shape, but maintains the continuity properties. Moving
one of the Bernstein control points alters the shape, and in general reduces
the degree of continuity.

In fact, a single Bernstein segment can be regarded as a special case of a B-
spline, in which the domain is a single segment, with a sufficiently multiple
knot at each end. Because B-spline curves can be concatenated to form
another B-spline curve, a sequence of Berstein curves can also be regarded
as a degenerate B-spline.

3.6. NURBS

Within the B-spline context, there are variations. If all the segments are
of equal length in parameter space, the B-spline is termed uniform; if the
software permits segments to differ in length, the B-spline is termed non-
uniform.

The schemes described above all map from R to IR®. It is also possible to
map not into Euclidean space, but into projective space. It was mentioned
above that the graphics community found it useful to have descriptions
which were closed under perspective transformations.

This is achieved by mapping from R? to IR, into the space of homogeneous
coordinates.

Such an approach also makes it possible for the parametric form to rep-
resent a circle or ellipse exactly, using polynomial basis functions.

The conversion to Euclidean coordinates, which is necessary at some
stage, is achieved by dividing the first three homogeneous coordinates by
the fourth. This division gives the name Rational to the variant.

The full description Non-Uniform Rational B-Splines is universally trun-
cated to the acronym NURBS.

Each control point now has four components. The extra degree of free-
dom is the weight by which the coordinates of a point are multiplied to
give the first three components. These weights have the nature of nonlinear
coefficients, and so are not easy to use when trying to achieve specific ef-
fects. Most designers use them only to match circular arcs; otherwise they
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just use unit weights. However, the ability to match conics, the closure
under perspective transformations, and the better match to algebraic ge-
ometry assumptions make NURBS the scheme normally chosen for surface
representation systems of the late 20th century.

3.7. Multivariate B-splines

There is a further extension of the B-spline ideas, described in de Boor
(1993b), which should be usable as a set of basis functions for nontensor
product surface description. The arrangement of control points need not
be strictly rectangular. However, the definition of the partitioning of the
domain is a nonlinear control, and they do not give the topological freedom
which recursive division definitions offer. To the best of my knowledge no
commercial surface definition software has yet applied them.

3.8. Transfinite interpolation

The previous sections have dealt with surfaces defined by a finite number
of coefficients, usually the positions of control points. A second important
stream defines a surface patch in terms of its bounding curves. Because
each curve contains an infinite set of points, these surface definitions are
referred to as transfinite. If the curves are themselves represented by a
finite description, this can be mapped through to give a finite description
surface as a special case of a transfinite one.

The first transfinite surface was devised by Coons (1967), and dealt with
the problem of building a parametric surface defined over the unit square,
meeting a pre-defined curve on each of its four sides.

There is a compatibility requirement that the curves should meet at the
corners, and we assume that this is met.

Let the four edges be Up(v), Ui(v), Vo(u) and Vi(u). The compatible
corners are

Up(0) = Vp(0) = Coo,
Uo(1) = V1(0) = Cho,
U1(0) = W(1) = Co,
Ui(1)=wi(1) = Cu. (3.13)
We require a surface P(u,v), such that
P(u,0) = Vy(u),
Pu1) = Vi(u)
P(0,v) = Uo(v),
P(1,v) = Ui(v). (3.14)

Coons approached this in two stages: first to match two of the edges and
then to worry about the other two.
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(A) (B)
(@) (D)

Fig. 8. Coons two-way blending.

The first two conditions above may be met by simple linear interpolation
across the patch

P(u,v) = (1 — v)Vy(u) + vVi(u). (3.15)
This does not match the other two conditions. There is a discrepancy of
Uo(v) — (1 —v)Vp(0) — vV1(0)
at the u = 0 edge and of
Ur(v) — (1 — v)Vo(1) — vVA(1)

at the u = 1 edge. So a second linear interpolation gives a correction function
which can be added to the first try. Substituting the corner points by name,
the correction becomes

(1 = u)[Up(v) = (1 = v)Coo — vCo1| + u[U1(v) = (1 = v)C10 — vCy] (3.16)
giving the overall surface

P(u,v) = (1-v)Vy(u) + vVi(u) + (1—u)Up(v) + uU;(v) —(1—u)(1—2v)Cyg
—(1—u)vCp — u(1-v)Cyo — uvCiy. (3.17)
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Fig. 9. Parallelogram construction.

Coons (1967) then took the ‘add a correction’ idea further, to achieve a
match to given positions and cross edge derivatives, so that two adjacent
patches, both being forced to match the same cross-derivatives, would land
up tangent plane continuous. This used the fo and f; functions as described
under Hermite surfaces above. However, it was not so successful, as, in the
special case where the bounding edges were cubics, the twist terms were
found to be zero.

Further, this approach gave only C! composite surfaces using cubic pieces.
The splines gave C! using quadratics or C? using cubics.

Gordon (1969) made a much better generalization, by using interpolating
spline functions as his generalization of the linear blending in the first-order
Coons surface. This allowed a smooth surface to be passed through any
compatible net of curves of constant u and curves of constant v.

The interpolation theorists formalized these ideas, and discovered that the
Boolean sum of two interpolation or approximation operators was a powerful
way of building new operators. Barnhill (1974) applied this technique to
generate a transfinite surface in a triangle with given edges, and Gregory
(1986) made one for n-sided regions with n > 4.

There is a second intuitive construction for the four-sided Coons patch.

Given a set of boundaries as before, and a value for the u, v pair at which
a point is to be constructed, evaluate the edges at the appropriate points to
give edge points Uy(v), Vi(u), Ur(v), Vo(u).

Now take each corner point, with the edge points on the adjacent edges,
and construct a parallelogram. The fourth corner is an estimator for the
required point. Take a weighted mean of these estimators, using weights
inversely proportional to the logical area of the parallelogram.

As the required point nears one of the edges, the estimators from the
corners at the ends of that edge have as their limit the edge point, and the
weight of those two parallelograms dominate. Thus the surface interpolates
the edges as required.
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Fig. 10. Coons/Bernstein morphism.

This can be generalized to n-sided regions, and can also be applied to
provide a way of estimating a surface when only three or even two of the
sides are known.

Another intriguing property of the Coons first-order form is that if a cut is
made across a patch, along a line of constant parameter, dividing the original
patch into two, fitting each patch into its new boundaries gives exactly the
same surface as the original.

Yet another is that if a first-order Coons patch is fitted to boundaries
which are Bernstein curves, fitting the Coons surface to the curves gives
exactly the same result as fitting a discrete interpolant to the control points
of the boundary and then using Bernstein to interpolate the surface.

The transfinite techniques are extremely powerful, but more detailed in
implementation than the B-spline ideas. They tend to be used in part-
programming systems for numerically controlled machine tools, and in mesh
generation for finite element analysis rather than in surface design systems.

A further method has been devised for fitting surfaces to desired bound-
aries. The Coons construction is actually the solution of a hyperbolic dif-
ferential equation. Bloor and Wilson (1989; 1990) have tried using elliptic

equations to determine the interior of a region with known boundary. There
is much more computation in this case, because a point in the interior of an
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elliptic equation solution depends on all the boundary points, and so they
now regard their technique as a way of generating the interior control points
in a conventional NURBS representation.

3.9. Offset parametric surfaces

Offsets were mentioned above, as a step in the construction of rolling ball
fillets. They are also extremely important in surface systems for two other
purposes: the construction of the faces of objects which have a small but
nonzero thickness, where a nominal surface may well lie in the centre of the
object; and the calculation of tool centre paths for numerically controlled
machining. (Bell et al., 1974).

The latter is more demanding, and requires more generality.

Fig. 11. Toroidal offset.

In the general case a machining cutter has teeth which sweep out a surface
which is a surface of revolution made up of cylindrical, conical and toroidal
pieces. The optimal cutting region is usually on just one of these pieces,
and so the form of that piece is regarded as being the cuttter form for the
purpose of computing a specific cut. It is usually a toroid.

Given a point at which the cutter envelope is to be tangential to the
surface being machined, the question is where to put the tool datum point.
Let this be the centre of the torus. Let the major and minor radii of the
torus be r; and 79 respectively.

Then moving up the surface normal from the cutting point by ry gives
a point at the centre of a tooth. Moving perpendicular to the tool axis
through r; gives the required tool centre.

P'(u,v) = P(u,v) + raN + r1 (A x N x A). (3.18)
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This is algebraically complex, because of the square roots implicit in the
unit vectors, but computationally straightforward.

Tool paths can be computed in either of two ways, depending on circum-
stance. The first is to compute the path of the cutting point first, and then
for each point along this path, correct it to give the tool centre. This is
relevant when it is required to leave a particular trace on the surface.

The second is to treat the offset equation as the definition of an offset
surface, and use the offset surface within some interrogation which defines
the actual tool centre path. For example, the path where a cutter cleans
out the intersection of two surfaces, leaving a fillet as side-effect, must be
computed by intersecting the two offset surfaces. Efficient milling cutters,
used for roughing, demand that the bottom of the cutter is never used for
cutting; the tool centre path must lie in a plane perpendicular to the cutter
axis, and so a plane section through the offset surface is used.

The offset surface can either be held for interrogation as an approximation
using some other form, or the offset equation can be applied dynamically
every time the evaluation of a point on it is required.

It should be noted that the offsetting context described above can intro-
duce discontinuities of position where the surface normal lies in the direction
of the cutter axis. A tiny disk around such a point maps into a thin annu-
lus of radius 7. This indicates that accurate approximation by one of the
standard forms may be difficult.

4. Recursive division surfaces

One of the properties shared by the Bernstein surfaces and the B-splines is
that their bases are variation diminishing. Any plane cuts a B-spline curve
no more often than it cuts the control polygon. In the surface case, the
equivalent property is that a piece of surface lies entirely within the convex
hull of its control points.

This means that there is a simple test which may identify quickly that
there is no intersection. This leads to a ‘divide and conquer’ style of interro-
gation based on the idea that if a piece of surface is simple enough it can be
interrogated directly; if not, it can be divided into two, and a test applied
to see whether each half contains any result of the interrogation. Examples
of such interrogation algorithms will be presented later in this section.

The key to such an approach is the ability to produce cheaply the control
networks for the halves of a subdivided surface. In the case of the Bernstein
basis, the de Casteljau construction provides this, where the new control
points are generated through a tableau of simple linear combinations. In
the case of B-splines the knot insertion algorithms play a similar role, which
pretend that a single span of the B-spline is actually two, although there is
no discontinuity at the join.
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It was observed that all of these constructions of new polygons and con-
trol nets consisted of taking linear combinations of existing control points,
the coefficients in these linear combinations depending on the detail of the
surface mathematics.

The structure of the interrogations did not depend on that detail at all.
Provided that a new set of control points could be calculated, the interro-
gations would work.

This meant that it was possible to put forward a surface definition in
terms of the division construction. Catmull and Clark (1978) generalized
the bicubic B-spline surface, and Doo and Sabin (1978) the biquadratic
B-spline surface. What both achieved was the ability to have a control
network which matched the desired natural topology of the surface being
defined, whereas the basic tensor product B-spline enforced that the control
network had to be a regular rectangular grid of control points.

This was not just an aesthetic issue. A unit square of the real parameter
plane can map nicely onto pieces of surface which are bounded and square,
or onto a finite length of cylinder, or onto a complete torus. It can map
onto all of a sphere except one point, but in the neighbourhood of that
point the mapping is highly singular. It cannot map onto closed surfaces
of higher topological type. The recursive division control networks have no
such limitation, and oriented surfaces, open or closed, of any topology (see
Griffiths, 1976) can be represented as unitary entities. There is only a small
question of how to handle nonoriented surfaces.

The rules of this game were rapidly sorted out. If the control network
were actually regular in some region, the generalized construction should
be equivalent to one of the standard tensor product formulations. The ir-
regularities should not multiply as division takes place, and then at each
stage of division, more and more of the surface area of the surface can be
identified as equivalent to a standard form. The unknown regions round
isolated irregularities can then be analysed in terms of the eigenstructures
of the operator which replaces the configuration of control points round the
singularity by a new, smaller configuration.

Despite the topological freedom which this approach gives, there are some
difficulties which have led to it not being taken up at all widely.

The first is that the quadratic, which behaves well in terms of mathe-
matical analysis, and has continuity of tangent plane but not, of course, of
curvature, at the singular points, tends to give rather bulgy surfaces no-
ticeably different from what one expects. A control network in the form
of a cube, for example, gives a closed surface significantly different from a
sphere. In other words, the method introduces features of shorter spatial
wavelength than the density of control points implies. These features are
artifacts. Adding extra density of control points merely increases the spatial
frequency of the artifacts.
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The second is that the cubic, which suffers from the same problem but
less severely, does not have a formulation giving continuity of curvature at
singularities. The mathematical uncertainty associated with this may have
discouraged system builders from basing their software on this approach.

A third is that it is the uniform B-spline which can be generalized in this
way. The non-uniform capability has been found so useful that to lose it
would be a backwards step.

5. Conversions between different representations

It is often the case that the same point-set can be represented in more than
one way. As will be seen in the next section, on Interrogations, it may be
advantageous to have more than one representation available. Indeed, recur-
sive division interrogation is important because it can be used for parametric
surfaces.

(i) The natural quadrics have a familiar parametrization in terms of tri-
gonometric functions as well as the analytic form. So do tori.

Quadrics also have a parametric representation in terms of rational
parametric quadratics, and the tori in terms of rational parametric
biquadratics. The quadratic representation of the quadrics maps the
entire parameter plane onto the surface of the quadric; if it is required
to cover a complete quadric by the unit square a quartic representation
is available, but there is always at least one singular point.

It is also true that nonsingular cubic analytic surfaces can be para-
metrized as rational polynomials, but it is not clear how much higher in
order one can go and still have rational polynomial equivalents. Even
for quadrics the degenerate case is difficult to parametrize (consider
the case where the quadric consists of two planes), and the cubic cylin-
der whose generator is a plane cubic with no double point cannot be
parametrized with rational polynomials.

Parametrization with elliptic functions or with functions including
square roots will doubtless extend parametrizability, but eventually the
fact that higher order surfaces can easily be of high topological type will
get in the way, forcing the use of a complex parameter plane, which
rather spoils any advantage of having both analytic and parametric
forms available.

(ii) On the other hand, all rational parametric polynomials have an im-
plicit (analytic) form, equal in order to the highest total degree in the
polynomial.

This result applies only to a single piece of parametric surface. Where
a surface has a piecewise definition, each piece has its own analytic
equation, and deciding which piece is relevant at any given sample
point is nontrivial.
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(iii) The parametric bipolynomials can all be expresssed as B-splines, and
thence as recursive division surfaces.

Transfinite surfaces can also be expressed as recursive division sur-
faces provided that:
— the curve cutting the surface in two can be evaluated,
— the bounding curves can be subdivided; and
— bounding boxes can be evaluated for all these curves.
The bounding box for a transfinite surface can then be expressed in
terms of the boxes of its bounding curves and that of its corner points.
The resultant box is rather slack, and so this kind of surface will not
be very efficient for recursive division interrogation.

(iv) Recursive division surfaces which are of use all consist of parametric
pieces. These pieces are of reasonable size where the control network
is regular, but form an infinite regress around the points of singular-
ity. The regress is terminated by the unresolved piece becoming small
enough and flat enough to be approximated by a plane polygon. This
is not really a conversion, since all recursive division interrogation falls
back on some other method at the leaves of the division tree.

6. SURFACE INTERROGATIONS

A surface defined by any of the methods above is a barren thing indeed if
we cannot make use of that definition in the production of real artifacts. To
do this we need to ask questions of the surface such as

‘What shape must I make the supporting members to fit inside the skin?’
‘What path must a milling cutter take to machine the shape of this surface?’

‘What shape does this piece of surface have to be in the flat, so that I can cut it
out before I bend it into its final form?’

We also need to ask questions of a candidate surface to find out if its
shape will be satisfactory for its purpose. Examples of these concerns are

‘Make me a shaded image as seen from here.’
‘Show me a set of closely spaced plane sections.’
‘Calculate the lift and drag of this wing.’

All these questions are higher or lower level examples of interrogations,
and the ability to provide the answers robustly and at acceptable computing
cost are the important issues in the provision of surface software.

The list of possible enquiries is endless. Those described here include
those most obviously required, and also others chosen to illustrate additional
paradigms.
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Within the scope of this section come the purely geometric enquiries; these
need to be combined with application-specific knowledge of illumination
models for rendering of shaded images, of feeds and speeds for machining,
and of flow simulation calculations for the aerodynamics calculations, to
provide such function.

This discussion of interrogation techniques starts with important prop-
erties of surfaces on which we can build. It then gives examples of those
interrogations which return results consisting of isolated points, continues
with those which return curves, and then proceeds to those which process
complete surfaces.

Within each group one example is taken in reasonable depth; others are
then dealt with by identifying their equations and mentioning any special
features which need to be taken into account.

A summary follows each group of interrogations.

In most cases we consider all three of

o  analytic surfaces, where all we can ask is the value and derivatives of
the defining function at specific points in space;

e  parametric ones where we assume that we know nothing about the
surface except its boundary in parameter space and what we can de-
termine by enquiring the position and derivatives of the surface point
at specific parameter values;

e recursive division surfaces where all we can do is ask for a piece of
surface to be split into a number of pieces, and enquire the extent of
some hull round each piece.

Limiting the available knowledge about the surface form to this extent
makes the techniques extremely general, and certainly not restricted to the
specific surface equations described in Sections 2, 3 and 4.

6.1. Basic interrogation properties

This section defines the basic interrogations which must be supported for
each of the three surface forms, if the methods described below are to be
applied.

Basic properties of analytic surfaces An analytic surface is one whose
point set is the set of zeros of some computable scalar function.

It is necessary to be able to compute the value of the function, f, at any
point, P.

It is necessary to compute its first derivative, df /dP, with respect to the
coordinates, and, for some interrogations, particularly those concerned with
curvature properties, the second derivative, d?f /dP2.

The first derivative is a vector which for points actually lying on the
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surface, is perpendicular to the local tangent plane. This we shall denote by
N, and call the normal vector.

It is unusual for this to be of unit length. The vector of the same direction,
but of unit length, is called the unit normal vector and is denoted by N.

The second derivative is a symmetric tensor which may also be regarded
as dN/dP.

Numerical differentiation is always available as a way of providing these
derivatives, but for most surfaces found in CAD (computer aided design)
systems, it is faster to differentiate the code which evaluates the function,
and thereby produce accurate pointwise derivatives, using code which can
often share comomon subexpressions with the basic evaluation.

Basic properties of parametric surfaces A parametric surface is a map
from some part of R?, the parameter plane to Rg, together with a description
of the domain.

It is necessary to be able to evaluate this map at any point, (u,v), of the
domain. Because the map is point-valued, we shall use the symbol P for
both the map and the resulting point.

It is necessary to be able to evaluate the first derivatives, dP/du and
dP/dv of the map with respect to the parameters, and for some interroga-
tions the second derivatives, d?P/du?, d?P/du dv and d*>P/dv?.

Again, specific code for these derivatives is preferable to numerical differ-
entiation.

The two first derivatives are vectors which lie within the local tangent
plane of the surface. The vector cross product dP/du x dP/dv is a vector
perpendicular to the local tangent plane.It is called the surface normal, and
denoted by N. Again, it is not generally of unit length, and a unit surface
normal is defined in the same way as for analytic surfaces.

If ||N|| = 0 the surface is improperly parametrized, and the methods
described below will probably fail. Note that ||/N|| > 0 implies ||dP/dul|| > 0
and ||dP/dv|| > 0.

It is necessary to be able to determine when a point (u,v) lies outside the
domain.

It is also necessary to be able to scan round the boundary. The domain
is a closed point set, so that parameter pairs lying on the boundary can
be evauated as within the domain. The boundary will be treated here as
a collection of curves in the parameter plane themselves parametrized by a
scalar variable t.

Basic properties of recursive division surfaces A recursive division
surface is the limit of the set of points in some collection of hulls, each hull
in a collection corresponding to a piece of the total surface.

A hull is any convex point set guaranteed to contain all the points of its
piece of surface. The convex hull is the minimal such, but slacker hulls, such
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as the convex hull of a set of B-spline control points, or the bounding box
thereof, generally lead to faster algorithms because the hull tests become
much simpler. The implicit assumption here is that a hull is the intersection
of a number of support planar half-spaces of predetermined orientations.
Exactly which orientations are used is decided by the interrogation software
writer. The bounding box is not misleading as a mental image, though using
more support directions can improve performance.

It is necessary to be able to evaluate the hull (i.e. the pedal distances of
the support planes) for a piece of surface.

It is necessary to be able to divide the piece of surface into two, and then
produce a hull for each part.

Recursive division interrogations will only be efficient if as this division
proceeds, the hull shrinks in linear dimension proportionately with the piece
of surface it represents. The total volume of the hulls of all the pieces of a
surface must shrink as the division is made to deeper levels.

For interrogations relating to orientation and curvature properties it is also
necessary to be able to evaluate a hull containing the unit surface normal
vectors of all points in the piece.

It is necessary to be able to decide when a piece of surface is small or
simple enough for direct methods to be applied. As a default, the condition
can be used that the entire hull is within the geometric precision required,
but this demands very deep division, which is expensive in computing time.

For the purposes of this section, it is assumed that the boundary of the
recursive division surface is that implicit in its piece structure. This will
not be the case when recursive division methods are used for robustness
on trimmed parametric surfaces. In such cases resolving the boundary is-
sues will have to use the methods described under the parametric surfaces
paragraphs of each interrogation.

7. Nilvariate interrogations

Within this section we are looking for results which take the form of sin-
gle points. In general there may be multiple solutions. The type of each
interrogation is therefore

surface x auxiliary data — set of points
where the auxiliary data are whatever is needed for the specific enquiry.
There are no particular data-structure complications.
7.1. Raycasting

This is the problem of finding the intersection of a straight line with a
surface. It can be used in graphics in order to render a shaded image of a
surface, and it is also a useful constituent of other algorithms.
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Straight lines have a number of alternative representations. We can con-
vert between them, and we use this ability to use the most convenient form
for each manifestation of this interrogation.

The most fundamental form for any algebraic curve is probably the Cayley
form

I(P,Q) = 0 if the line through P and @ meets the line L. (7.1)
In the case of a straight line the function [ is bilinear.
(P,Q) =P Lij Q. (7.2)

By taking two arbitrary values for ¢} we reach the form where the line is
defined as the intersection between two planes

P'F, = 0,
PG, = 0.

In Euclidean coordinates a plane, F', can represented by a point thereon,
QF, together with a plane normal F.

[P—QrF] F =0, (7.3)
[P-Qc]-G =0.

For good conditioning, the normals F' and G should be orthogonal to each
other.

Taking any two distinct points of the line (and in homogeneous coordinates
the intersections of the line with the four coordinate planes will always
contain two distinct points), P; and P,, any linear combination aP} + 3P4
will also satisfy equations (7.3).

In Euclidean coordinates we need to apply the normalization o + 8 = 1,
and it is most convenient to express the general point of the line in terms of

P =P +oT, where T = [P, — P]. (7.4)

From a given point P, known to lie on the line, the value of o can be
recovered by

_[P-R]-T

=

For some purposes the normalization can be carried further. If T is a

unit vector, o measures distance along the line. This is useful only when

dealing with metric properties, or when (7.5) is being invoked really often
for a single line.

(7.5)

Raycasting analytic surfaces Here we use the parametric form of the line
P = P, + aT. Substituting this into the analytic equation f(P) = 0 gives
an equation in ¢, thus reducing the problem to root-finding.
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Root-finding of general functions is a nontrivial exercise, but for poly-
nomials there are several well-understood methods. The problems are es-
sentially those of conditioning: ill conditioned geometry can exist in the
form of almost-tangencies, and will lead to ill conditioned roots. The purely
numerical ill conditioning can be minimized by use of the Bernstein basis
for all polynomials (Farouki, 1987a,b; Farouki and Rajan, 1988a,b).

When this interrogation is being used for graphics, the interesting root is
the smallest positive one, corresponding to the nearest leaf of the surface to
the eye point in the direction of view.

Raycasting parametric surfaces If L is represented as the intersection of
two planes, the problem becomes one of solving two simultaneous equations.

[P('LL,’U) - QF] Fo= 0, (76)
[P(u,v) — Qg]- G =0.
From any given starting point (ug,vg) sufficiently close to the solution,
Newton iteration is fast and effective.
Expanding the surface as a local Taylor series about Py (= P(ug,vg))
gives
P(ug + bu,vg + 6v) = Py + (dP/du)gbu + (dP/dv)ebv. (7.7)
Substituting this into equation (7.3) gives

{P() - QF] -F+ (dP/du)o - Féu + (dP/d’U)O -Fév =0, (78)
[Po — Qg - G + (dP/du)o - Géu + (dP/dv)g - Gév =0,

which may be cast as a matrix equation for fu and év

[dP/du-F dP/dv-F ] [ Su ] B [ —[Py— QF] - F,
dP/du-G dP/dv-G || 6v | = | =[P - Q¢] - G.

solution of which gives increments of u and v to the next estimate.

(7.9)

Uir1l = u; + Ou,,
Viy1 = v + ov;.

Iteration proceeds until the point evaluated lies within the required toler-
ance of each of the planes. For this test to be most appropriate, the planes
themselves should be close to orthogonal.

The straightfoward Newton method described above almost always works
fast and efliciently. Experience suggests that in typical surface interroga-
tion situations the average number of steps taken is two (three evaluations
altogether).

However, in the worst case, it is possible for divergence to happen. It
is also possible for the computed increment to lead to a point outside the
domain of the surface, so that strictly it cannot be evaluated.
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Enforcement of convergence Even though the actual step may not result
in reduction of the residuals of both halves of (7.3), the increment direction
is a descent direction, and so a small enough step in that direction will lead
to a better estimate. This is exactly the line search issue in unconstrained
optimization (Nocedal, 1992).

Because this situation occurs rarely, we need not hunt for an optimum
algorithm. A simple fix-up considers each of the residuals separately.

Let the residuals of one equation in (7.3) at two successive estimates be
r; and ri4q.

If these are of opposite sign, the appropriate fraction of the step to take is
r;/(ri — riy1), derived by linear interpolation: if they are of the same sign,
use r;/(2r;+1), derived by linear interpolation on estimates of first derivative
of residual.

Each of the equations in (7.3) gives an estimated fraction of the step to
take. (If |r;41] < |ri| then the appropriate fraction is 1.) Use whichever
fraction of the estimated step is smaller.

This gives a new P;;; for which the residuals must again be estimated,
and if necessary the fix-up must be repeated. In order to be able to prove
termination of this loop there has to be a counter, because geometric situ-
ations can occur where there is no solution. In the case of raycasting this
happens when the surface we are dealing with is not C?, (for example, the
offset of a surface which is not C') but when applying the same approach to
situations where the equations being solved involve derivatives of the surface
it can happen when some higher continuity is lacking.

The refinement part of the interrogation then has to report back to its
calling code that no solution exists in this locality.

Enforcement of boundary When the next estimate lies outside the do-
main, we need to find a local point within the domain, so that the iteration
can continue, because although one estimate has gone outside, the final solu-
tion may lie inside the domain. Since the boundary is typically well behaved,
at most two segments of boundary are involved. If two are involved we use
the corner itself as the next estimate; if only one, the intersection of the
increment with the boundary.

If the solution really does lie outside the boundary, the refinement step
must again report absence of a solution to its calling code.

Multiple solutions Multiple solutions can occur. It is possible for a ray
to cut even a single bicubic patch in as many as 18 distinct points.

The second case of figure 12 is rather more worrying, as there is no sepa-
ration of the solutions by a locus where the surface normal is orthogonal to
the ray axis.

Each starting point leads to at most one solution. Where there are multi-
ple solutions we need multiple starting points. Different starting points may
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4) (B)

Fig. 12. Multiple solutions for raycasting.

converge to close estimates of a common solution: two different starting
points may also converge to close but different solutions.

Handling this issue is thoroughly messy and ad hoc. Do not expect pro-
found mathematics here.

The simplest approach is to use a dense spatter of starting points, and
refine each of them. Finally, sort the solutions along the line, and combine
those which are close in the parameter plane as well as in space.

This is unsatisfactory on two counts. First, there is no obvious way to
decide how dense is dense enough: second, even a 10 x 10 grid means 100
evaluations; each refinement only three.

Reducing the number of start points considered is well worth while, re-
ducing the number actually refined even more so.

System builders should consider associating information with each para-
metric surface, indicating how crinkly it is. This could be determined at the
time the surface is defined, or over-ridden manually by the system operator.
This information would then be used to decide the density of the spatter for
all subsequent interrogations.

When the spatter is dense enough, the start points can be ranked accord-
ing to the likelihood of their refining to a new solution. The first measure, in
the case of raycasting, is the distance of the candidate from the line. How-
ever, there may be several starts close to one solution, while another solution
may be some distance from the nearest start which leads to it. Starts which
have a nearby start closer to the line should therefore be ranked low.

Coherence Rays are seldom cast in ones. A standard technique for im-
proving performance is to use information from previous nearby instances
of the same enquiry. For example, the places where the ray for an adjacent
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pixel cut the surface are likely to be close to where this one cuts it, and can
act as excellent start points.

However, situations can change from one pixel to the next, and overuse
of coherence can lead to being caught on the wrong leaf of a surface.

Two rays can have different sets of cut points if either a surface boundary
or a silhouette come between them.

Raycasting recursive division surfaces In a recursive division of a sur-
face, all those pieces whose hulls do not intersect the line can be eliminated.
This is efficient, particularly when the hulls are aligned with the direction of
the line. It is probably worth setting up a special set of hulls when a large
array of parallel rays are to be cast.

If the hulls are not aligned, it may be simpler just to cull all pieces except
those which cross both of the planes.

In the graphics situation, it is also possible to eliminate all pieces which
lie further from the eye point than the nearest root found so far, and so some
sorting of the pieces on the stack may be worth while, so that the nearest
root is found early.

7.2. Mazimum extent

This enquiry determines the places within a surface which might well be
points of maximum extent in a direction given by a vector T. Its primary
use is as an auxiliary interrogation for other enquiries, particularly plane
sections. It is chosen for inclusion here to illustrate enquiries which depend
on surface derivatives.

Maximum extent of parametric surfaces The equation which solution
points satisfy is T'x N = 0, where [V is the surface normal, given by dP/du x
dP/dv.

When this is true, we have dP/du-T =0 and dP/dv-T = 0.

Each of these has a residual at any given surface point, and so we can
solve for increments to  and v which reduce these residuals to zero in a way
precisely analogous to the raycasting algorithm.

The Taylor expansions of dP/du and dP/dv are

dpP dpP d’p d2p
E(uo + bu, vy + 6v) = @(uo,vo) + (W)) bu + (du dv)o dv
dP dpP d’p d’pr

- ) ov) = — —— 16
T (ug + du, vy + 6v) T (w0, v0) + (dudv)o du + <dv2 )O v

so that the matrix equation for éu and év becomes

d?*P/dv?-T d*P/dudv-T |[6u] [ —dP/du-T (7.10)
d’P/dudv-T d*P/dv?-T bv |~ | =dP/dv-T | '
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Solution, including forced convergence and handling of the boundary pro-
ceeds exactly as in the raycasting case.

Maximum extent of recursive division surfaces Because we are basi-
cally solving the equations

dP/du-T=0 and dP/dv-T =0,

recursive subdivision has to use culling based on the hulls of the first deriva-
tives.

This is straightforward if we are using the recursive division form of a
parametric surface, but if we are using a fully general recursive division
surface the independent derivatives may not exist over pieces encountered
early in the subdivision.

In this circumstance we need to recast the overall equation to use the
surface normal hull.

Set up two auxiliary vectors, R and S, perpendicular to T and to each
other.

We are now solving for

R-N=0, S-N=0,

so if the surface normal hull of a piece does not cross the plane perpen-
dicular to R passing through the origin, or if it does not cross the plane
perpendicular to S, we can cull the piece.

7.8. Nearest point

We seek the nearest point, P, of a given surface to a given point Q.

This is a useful ‘building-block’ interrogation, second only to raycasting,
since it is often useful for particular places on a surface to be indicated by
the operator by specifying a nearby point, leaving the program to supply
the precision.

It is also used in machining, where a path is traced until the tool centre
meets a ‘check surface’. This is checked efficiently by measuring the distance
from a sample point to the nearest point on the check surface. The tool can
then move that far along its trajectory before another test need be made.

Nearest point on an analytic surface Because we are not considering
boundaries or discontinuities on analytic surfaces, the nearest point lies at
the foot of a perpendicular.

A first estimate is derived very simply as

_ f(Q)
noo- () e

Typically this first estimate, when evaluated, will neither lie on the surface
f nor have its normal passing through Q.
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However, the Taylor expansion of f about Py gives a better estimate of
the local tangent plane and the local perpendicular direction.

Unfortunately, if the distance of Q from the surface is larger than the local
radius of curvature, the obvious iteration, intersecting the line from @ along
N; with the Taylor plane, can oscillate and even diverge. It is necessary to
take second derivatives into account.

The equation set to be solved is

f(p) =0,
[P_Q]XN = 0,

where the second equation has rank 2, giving three equations in the three
coordinates of P.

Let the residuals at P; of the equations be ry and R; respectively. Then
for a step 6 P, the residuals will alter by amounts estimated by differentiating
the above, and the Newton step is given by

df

(—i—ﬁ(Pl) . (SP = -
—N(Pl) x 6P + [P - Q] X I:% : 6P} = —Rl. (711)

With this extra term, the iteration can converge on a point P whose
distance from Q is a local maximum, rather than minimum. This is unlikely
with surfaces of low order, but it is a wise precaution, having converged on
an initial solution to set up a spatter of points at, for example, the vertices
of a regular icosahedron centred on @, with radius QP. Provided all of
these points have a value of f of the same sign as @ there is confidence that
the right solution has been reached. If not, a good starting point for a new
convergence will be the point on the line between @ and the spatter point
of most opposite sign of f, divided in the ratio of the two f-values.

Nearest point on a parametric surface The parametric surface case
brings two complications: the first is finding a good place in the parameter
plane from which to start; the second is the boundary.

Clearly this is a classical example of constrained optimization. Unfortu-
nately, the mathematical interest in optimization has been in solving prob-
lems of high dimension in machines of limited memory. The dimension here
is only two, and the ambition level significantly higher in terms of robustness
and performance in the typical well-behaved cases.

Finding a good starting point can be addressed by spattering, just as in
raycasting. In this case there is an argument for finding the nearest point
on the boundary to @, and using that as the first starting point. This is
because scanning round the boundary is only a univariate haystack to find
the needle in, and because the nearest point on the boundary may indeed
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be the solution. Unlike raycasting, there is always at least one nearest point
of a surface, and it may lie on the boundary. Starting from such a point is
easier than having to work out what to do when the normal process tries to
cross the boundary.

The same Newton principle gives as an iterative solution method based
on the equations

[P - Q] dP/du=0, [P-Q] dP/dv=0,

¢vu ¢vv ov '—[Pl - Q] : dP/du ’ ’

where

¢ = dP/du-dP/du+ [P, — Q] d*P/du?

buv dP/du -dP/dv + [P1 — Q] - d*P/dudv

¢ou = dP/du-dP/dv+ [P, — Q] d*P/dudv and

¢y = dP/dv-dP/dv+ [P — Q] d*P/dv>.
The problem with the straightforward Newton method converging on a fur-
thest point occurs in the parametric case too. With a sparse initial spatter
it is probably more likely. It can be detected by the Newton step not being
a descent direction. When this happens an appropriate response is to use
the steepest descent direction instead. The actual step to use is that given

by equation (7.12) with the second derivative terms omitted. This fails only
when an initial estimate falls exactly on a local maximum of distance.

Nearest point on a recursive division surface In a recursive division
of a surface, all those pieces can be eliminated whose nearest point is fur-
ther from @ than the nearest furthest-point of any piece met so far. More
sophisticated tests using the hull of surface normals would risk discarding a
nearest point which was not a foot of a perpendicular.

7.4. Umbilic points

An umbilic point is one at which the principal curvatures are equal, so that
the principal directions are indeterminate. Calculating the positions of any
umbilics is the first stage in dividing a surface into principal patches.

This enquiry is included here as an example of the use of second derivatives
of a parametric surface.

The condition for an umbilic is that for some value of the local curvature
k,

Il

d?P/du®- N kdP/du - dP/du,
d’P/dudv-N = kdP/du-dP/dv,
d’P/dv? N = kdP/dv-dP/dv.
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Eliminating k from these three equations, and noting that a well behaved
surface may easily have dP/du - dP/dv = 0, we can derive two equations of
reasonable symmetry.

dp dpd’P . _ dP dPd*p

du du dv? dv dv du? ’
(i0.40, 9000y £ _ P rler o)
du du dv dv/ dudv du dv |du? = dv? '

Provided that the surface is C?, these two equations can be solved us-
ing exactly the same techniques as raycasting and maximum extent above.
Note that NV is not a constant, but itself depends on the first derivatives of
P, and so the four terms of the Newton matrix become fairly complicated
expressions involving first, second and third derivatives.

7.5. Reflections of points

Suppose that we want to know at what point of a surface P(u, v) the reflec-
tion appears of a point (), as seen from a point E. This requirement appears
in the checking of candidate surfaces for fairness in car design.

This problem is closely related to that of nearest points; the nearest point,
P, to a given point, @, if it lies within a surface, rather than on its boundary,
is also a point at which a light ray from @ to @ bounces off the surface. The
difference is that there may be no solutions, or many.

The equations to be solved are that

(P-Q)+(P—E)]xN=0, (7.13)
which may be resolved into

(P~ Q)+ (P-E)]-dP/du =0,
[(P—Q)+(P—E)-dP/dv =0.

We do require second derivatives for stability, but all zeros of the left-hand
side function are valid solutions, and so, unlike nearest point, situations
where the local Hessian is negative or mixed are required solutions.

7.6. Summary of nilvariate interrogations

We have seen examples above of enquiries which depend only on surface
position, and those which depend on derivatives of the surface. Each has
its own pair of equations which can normally be solved by an initial scan,
followed by Newton iteration.

Generally speaking the biggest problem is finding the global solution when
local ones also exist, or all the solutions if we want all of them. This demands
fine scanning, except where recursive division methods can be applied.
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The other problem is the interaction of the boundary, which may cut off
solutions which the iteration would lead to, or which may require constrained
solutions, satisfying different equations.

Recursive division interrogation avoids all of these problems, but the
prospect of setting up hulls for many higher derivatives is a somewhat daunt-
ing one.

8. Univariate interrogations

Within this section we are looking for results which take the form of curves.
In general there may be multiple pieces of curve within the required solution,
and so the type of each interrogation is

surface X auxiliary data — set of curves.

In the case of surface/surface intersection, the second surface is part of
the auxiliary data, though the treatment is relatively symmetric between
the two surfaces.

The data structure complication which does arise is the question ‘What
is a curve?’.

A curve is a set of points satisfying some definitional equation, but this set,
unlike the sets of points returned from univariate interrogations, contains a
continuum of points. We therefore need a finite representation.

The most concise finite representation is the definition of the curve which
forms the input to the interrogation, but that is not explicit enough. The
whole point of the interrogation algorithms is to calculate an explicit form
which can be drawn or printed or used in subsequent interrogations without
repeating much calculation.

The ideal almost-explicit form is a set of coefficients of a parametric equa-
tion, so that positions along the curve can be mass-produced by just plug-
ging values of parameters into some point-valued expression. This is seldom
possible to do exactly.

What we can do is to provide the coefficients of a parametric approzima-
tion to the curve, and a highly convenient form is the set of coefficients of
a first-order B-spline. These take the form of a sequence of points lying on
the curve, sufficiently dense that points generated by linear interpolation
between them lie within some operator-specified tolerance of the true curve.

The sound procedure is to hold, as well as this approximation, the original
definition, so that if more accuracy is required, the approximation may be
used as an initial starting point for further iteration. If this is done, the
points on the curve need only be calculated densely enough for low-resolution
applications, such as screen graphics. Higher precision can be obtained as
and when it is required. To make this as fast as possible, every point needs
to have, not just its coordinates, but also its parameter values in whatever
surfaces are involved in its definition.
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The convenient unit with which to deal is the connected piece. There will
be a finite number of connected pieces in the curves we deal with, and so
just collecting these into a set is quite acceptable.

8.1. Plane sections

Making a plane section through a surface is the most important single inter-
rogation. It is required for effective visual evaluation of a surface’s smooth-
ness and also for the shaping of templates to assist in manufacture.

The process of calculating such curves is closely related to that of tracing
contours in geographic systems.

The result of a particular cut may be one piece of curve, none, or several.
A cut through a trimmed surface may meet the boundary or it may form
a closed loop. The surface may be almost tangent to the sectioning plane,
resulting in a tiny contour, or, in the limit, a single point.

A plane is the set of points whose coordinates satisfy some linear equation,
P'F; =0.

In Euclidean coordinates this takes the form [P — Pp]- F = 0, where Pp
is a point lying on the plane, and F' is a vector perpendicular to the plane
(the plane normal).

For some purposes it is also useful to have a parametric representation
of the plane. This can be created by choosing two unit vectors, R and
S, perpendicular to F' and to each other. Then any point generated by
P := Pr + aR + 35 will satisfy the plane equation.

One way to find a pair such as R and S is to find which of the coordinate
directions X, Y and Z has the smallest magnitude of dot product with F.
Call it D. If F is nonzero, then D X F cannot be zero. Normalize it and
call it R. Then take T' x R, normalize it and call it S.

Plane sections through analytic surfaces The best approach to this is
to treat the plane as a parametric surface and use the methods described in
surface/surface intersections below.

Plane sections through parametric surfaces There are two phases. The
first is the identification of the topology of the required curve and isolation
of one point lying on each of the pieces. Then from each of the start points,
the curve can be traced around.

Finding start points Clearly, in the case of pieces of curve which meet the
boundary it is most convenient to start from a point at the boundary, and
so a scan round the boundary identifying points where the boundary cuts
the plane is a good start.

Finding each start point itself has two stages: the identification that a
start point exists, by noting the change of sign between two sample points;
and the homing in. Along the boundary this is essentially a root-finding
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operation. Finding roots of general functions is a topic deserving a section
in its own right. Polynomials are easier, since there is a known upper bound
on the maximum number of roots, and derivatives are easily accessed.

If the boundary can be traversed in a consistent direction (for example,
surface on the right if your head is pointing in the direction of the surface
normal), it is possible to label each crossing of the plane depending on
whether the curve is going from the positive side of the plane to the negative
or vice versa. We only need to trace from the members of one set, not both,
and the choice can be made consistent with the detail of the tracing code.

Finding start points within the interior of the surface has to be achieved by
setting up some grid of sample points, and looking for sign changes between
them. One approach is to determine all points where the surface normal is
parallel to the plane normal, or where the boundary tangent is perpendicular
to the plane normal, and set up a spanning tree between them. This uses
the mazimum extent enquiry described above.

Marching along the intersection The process of taking one step along
the curve, from one known point to the next, currently unknown, is a uni-
variate interrogation in its own right. The point we are seeking lies in the
surface — that will be ensured by working in the parameter plane — and also
in the cutting plane. The third condition that we need, to tie it down, is
that the step along the curve is appropriate.

Suppose that the requirement is to take steps of some specific length, /g.
Then a good approximation is that the new point lies on a plane perpen-
dicular to the tangent to the section at the start point and a distance lg
from it. We can now use the refinement step of the raycasting interrogation
described above to home in on the new point, using the parameter values of
the initial point as our initial estimate.

The same general strategy applies when more sophisticated step-length
strategies are used, because each step-length strategy can be expressed as a
locally linear condition equivalent to a second plane. Because the position of
the step-length control plane typically moves when we know more about the
surface near the solution, it is not worth taking the raycasting refinement
more than one step at a time. Just as in constrained optimization by penalty
functions (Wright, 1992), a single step gives enough precision to define the
problem closer.

Step-length criteria Even in the case where equally spaced points are
required, the normal to the step control plane can be updated at each step,
to point along the chord from the last point to the current estimate of this
one.

It is more typical, however, to require that generated points should be
denser in regions of high curvature of the curve that they represent. There
are a number of possible rules for this increase in density.
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Fig. 13. Relationship between «, I, € and p.

One of the simplest is that angles between the tangents at successive data
points should make equal steps. If ap is the required angle and p is the local
radius of curvature, then the step length required is 2psin ag, which for the
angles likely to be used in this criterion is essentially 2par. Now p will vary
from point to point along the intersection, and so it needs to be estimated.

As soon as one step has been taken we can use the same equation in
reverse. Let the tangent (given by (F x [dP/du x dP/dv])) at the previous
point be T;_;, and the tangent at the current estimate be 7;. Then «;, the
actual angle between successive tangents, is close to |T;_1 x T;|. Similarly,
l;, the actual step taken, is |P; — P;_1|. We can therefore estimate p = [;/2¢;

Thus the required step length is this region is | = L,ag/«;.

The new step control plane has (P, — P,_;) as its normal vector and
P, + |(P; — P,_1) as its sample point.

In situations where the sectioning plane is almost tangent to a surface (of
negative Gaussian curvature), it is possible for two branches of the curve to
come very close indeed to each other. It is essential to check that T;-T;_; is
positive. A negative value is an indication that such a singularity is nearby,
and that at very minimum the value of [g should temporarily be reduced.
A better response to this situation is to locate the singularity explicitly,
model the situation round it and proceed using that information (Bajaj et
al., 1988).

The ideal step-length rule from the control of approximation point of view
is that the error at the mid-chord should be constant from step to step, and
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Fig. 14. Close-to-singular plane section.

equal to the desired tolerance. This corresponds to the length rule 2 = 8¢p,
where € is the required error. However, it is safer to temper this rule with
a maximum step length for use in almost flat areas, and with a maximum
angle for use in very tight corners.

A serendipitous combination is to require that rather than I/l = 1 or
af/ag = 1 conditions, we apply

l/lp+a/ar = 1.

At very small curvatures the actual « values will be small, and so the
behaviour is dominated by the ! term, and similarly when the curvatures
are high, the angle term dominates.

For a range of curvatures about an order of magnitude wide, centred on
2ap/lg, the chord height error is close to agrlr/4, and so it is possible to
determine appropriate ap and lg from the mean principal curvature (deter-
mined when the surface is defined) and the required tolerance.

Handling the boundary What happens when the raycasting refinement
step reports that it has hit a boundary?

Because surfaces are sometimes defined by plane cross-sections, and it
is unreasonable to prevent those sections from being calculated, the first
response is that if the next estimate returned is an acceptable next point for
the curve (within tolerance of the sectioning plane, and with a step length
within, say, 10% of the current ideal), it should be accepted, and the section
continued as normal.

If the section piece started from a boundary, it is likely that the end of
the piece has been reached. The accurate final point of the piece should be
determined by homing in along the boundary in the neighbourhood of the
point just found.

Handling failure What happens when the raycasting refinement step re-
ports that it has failed to find a point which reduces the initial error?
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This is almost certainly due to a C® discontinuity in the surface, and so
the appropriate response is to locate the discontinuity and treat it as a local
piece of boundary. If knowledge of the structure of the surface is accessible
(for example, a knot-vector in the case of B-spline surfaces or the offset
parameters in the case of a toroidal offset surface with a surface normal
near the axis of the toroid) this can be used to define the local boundary. If
not, special code may have to be written to explore the vicinity and deduce
what the boundary should be.

Handling a closed loop When a curve piece starts at the boundary it
also finishes at the boundary, and the mechanism described above covers
terminating the piece. If it starts at a point in the interior, it may reach a
boundary, (in which case work has been duplicated, because the same piece
should have been found from a boundary start point), or else it returns to
its own start point. However, it is most unlikely to return exactly to the
start point, or even to within precision tolerance of it. What will typically
happen is that at some stage it will overshoot. Let S be the start point, and
FP; and P41 be the previous and current points. The simplest test to make
is to see whether S lies in the sphere whose diameter is P; P;; which is just

[P - 5] [Pip1 - 5] < 0

If this test indicates that S is inside the sphere, it should next be checked
that the step from P; to S would have a step-length criterion less than the
step from P; to P;y;. If it does, then the loop has closed, and S can be
accepted as the final point. If not, then we were unlucky, and started the
curve piece at a place where two leaves approached each other closely.

Plane sections through recursive division surfaces In a recursive sub-
division of a surface, any piece whose hull does not intersect the plane may be
eliminated. This is reasonably efficient, particularly if the hulls are aligned
with a face parallel to the plane.

A fuller elaboration of the detail of a recursive division bivariate inter-
rogation follows in the next section (8.2), on surface/surface intersections.
The plane section case is somewhat simpler.

8.2. Surface/surface intersection

This is normally regarded as the ‘difficult’ interrogation, but in fact it is
very much of a kind with the others.

The main complication from the point of view of this section is that there
are six possible combinations of the types of surface we consider. To reduce
this complication we shall ignore the two most awkward combinations, of
recursive division surfaces with other kinds.

Intersection of a parametric surface with an analytic This is the
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easiest case to deal with, because it is an almost trivial generalization of the
plane section algorithm. Wherever we evaluate a parametric surface point
we can immediately carry out a Taylor series expansion of the function which
defines the analytic surface. The first two terms of this Taylor series define
a local plane, which is used during that step as the local view of the analytic
surface.

Intersection of two analytic surfaces This case can follow the same
general principle, but has to be carried through in three variables, the space
coordinates, instead of two.

Once a start point is found, the stepping process works by setting up a
stepping direction vector as the cross product of the two surface normals. A
step is made along this of the required amount, and the surfaces re-evaluated.
The stepping plane and the two local linearizations are now three planes, the
intersection point of which is the next candidate curve point. This iteration
continues until the point found lies within the computational tolerance of
both surfaces.

The starting point can be found by a slight variation on this. An arbitrary
point is taken, and the Taylor planes evaluated there. Also evaluated is a
third plane, whose normal is the cross product of those of the Taylor planes,
and which passes through the arbitrary starting point. The intersection
of these three planes gives a better approximation to a starting point. In
typical situations where analytic shapes are encountered, the start point for
a particular intersection will be known to lie on a third surface: in such
cases, the intersection of three Taylor planes will converge to one of the
intersections of the three surfaces.

The main problem is detecting the closure of a closed loop intersection
without running the risk of aborting too early when two leaves of the in-
tersection come close together. Related to this is taking the correct trace
through singular situations where two surfaces are tangent to each other.

While this approach may be necessary if the analytic surfaces are fully
general, there is another approach which may be applied if it is known that
the only surfaces which will be met are planes, quadrics and tori. This uses
the algebraic geometry result that the intersection curve of any two such
surfaces may be parametrized by a curve of genus at most three and order
at most eight. The genus three property means that for each value of curve
parameter we can find four points on the curve by solving a quartic equation.
The problem reduces to stepping along the curve by solving a quartic at each
step. This could use the Tartaglia closed form, or else could just use the
previous roots as first approximations for an iterative root finder.

This means tracing complex roots, but, although I have not implemented
this myself, I do not regard it as particularly difficult. An interesting point
is that from the algebraic geometry point of view, the more singular the
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configuration becomes, with points of common tangency between the sur-
faces, the lower the genus gets, and therefore the simpler the algebraic so-
lution. See Farouki (1987a,b) for further elaboration on this point.

Intersection of two parametric surfaces This case takes us into even
higher dimensionalities, as we have to trace a path in both parametric spaces.
This is not a problem. Hoffman (1989) argues strongly that numerical trac-
ing in spaces of many dimensions gives simpler, more reliable code than
trying to eliminate the bulk of them algebraically. A useful tactic here,
however, breaks down the system of four equations into two pairs, by re-
solving the equations

Pi(u1,v1) = Pa(ug,v2)

along the two surface normals and their mutual perpendicular.

This can be viewed geometrically as finding the intersection of one para-
metric surface with the local tangent plane of the other and the stepping
plane, and then repeating the process for the other.

This means that the code for the refinement step of ray casting can be
used yet again.

The main problem here is finding a start point which lies in (or on the
boundary of) both surfaces. If we merely trail round one boundary we are
likely to find a point which is outside the boundary of the other.

Intersection of two recursive division surfaces This case shows the
recursive division method at its most elegant. In the outer product of two
recursive division surfaces we may eliminate any pair of pieces whose hulls
do not intersect.

This algorithm needs care in implementation to achieve efficiency. Specific
points are:

not to throw away any information;

to use simple hulls, such as bounding boxes;

to rebuild the hulls bottom up rather than just top down;

to split only one surface, in only one direction, at each stage;

to choose which surface to split;

to choose which direction to split it in;

to rejoin the constructed pieces of curve as soon as possible on the way
out of the recursion.

The algorithm applying these tenets (based on Nasri (1987)) is no more
complicated than some of the baroque methods which have been developed
for making sense of the heap of small pieces of curve which results from not
obeying the last one.

It requires as a data structure for each surface a binary tree in which each
node holds the local data from which subdivision takes place, a hull, a flag
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which labels the node as primitive, subdivided or not subdivided, and if
subdivided, the direction of subdivision and the parameter value at which
the subdivision takes place.

It requires as a data structure for the pieces of curve a linked list structure
within each curve. Each piece also has data identifying the logical place in
the subdivision hierarchy of each of its ends, and these ends are linked
together into chains accessible from the appropriate nodes of the surface
trees.

Algorithm

Procedure Intersect(sl:surface, s2:surface):curveset
begin
if disjoint(s1,s2)
then nil
elseif primitive(sl) and primitive(s2)
then primitiveintersection(sl,s2)
else  choosewhich(s1,s2,which)
choose direction(which, dirn)
if  which = sl
then Split( s1, dirn, sla, s1b)
Combine( Intersect(sla, s2),
Intersect(s1b, s2) )
else Split( s2, dirn, s2a, s2b)
Combine( Intersect(sl, s2a),
Intersect(sl, s2b) )
endif
endif
end

The procedure disjoint simply tests whether hulls overlap.

The procedure primitive returns TRUE if is argument is labelled as prim-
itive.

The procedure choosewhich decides which of the two surfaces to split.
This is based on whether either is primitive (they will not both be) and if
neither is, on the relative sizes of the two hulls. The nonprimitive with the
largest extent in any direction will be chosen for splitting.

The procedure choosedirection decides which way to split. Again this will
be based on which direction of split does most to reduce the largest hull
dimension. If the surface is already split, this procedure merely reports the
direction previously chosen.

The procedure Split implements the splitting if it has not already taken
place. As soon as the two new hulls are available, the hull of the surface
node being split is updated, to bring the bounds in, if possible. If this results
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in tighter bounds they are propagated upwards until either the top of the
tree is reached or no narrowing takes place. The two halves are examined
for simplicity, interpreted simply as planarity, and if either half is found to
be close to planar, it is marked as primitive, otherwise as undivided.

The procedure Combine takes those pieces of curve which are linked to the
common edge of the two halves of the split surface, and sews them together
into larger pieces. Where one side has been split to a deeper level than the
other, its endpoint is chosen to give the coordinates of the common point.

To gain most advantage from this approach, the subdivisions will not be
thrown away when a single intersection has been calculated. A great deal
of work can be saved by keeping all the surface nodes for the intersection of
s1 with s3 which is likely to be required next.

Clearly this arrangement is highly demanding of memory, but sufficient
memory for reasonable problems is now available on current workstations.
Further, if memory does become exhausted, surface nodes can be thrown
away and their memory reused, provided that the immediate parent is
flagged as no longer subdivided. If the data are required again, it will be
recomputed, and in the meantime the tighter bounds on the parent are still
having their good effect.

The only improvement available in the literature (Sederberg and Meyers,
1988) and (de Montaudouin, 1989) on the above scheme uses the concept of
co-simplicity to fine-tune and accelerate the point at which a nonrecursive
method can be used. If the surface normals of s1 can be bounded into a
cone, cl, and those of s2 into a cone 2, and the cones cl and c2 are disjoint
(except at the origin), then there can at most be one piece of intersection
curve between sl and s2, and it will not form a closed loop. It is therefore
safe to take recourse to marching methods to evaluate the detail of the piece
of intersection.

This refinement requires more data per node, to hold the bounds on the
surface normal, but it should permit the recursion to be truncated much
earlier, and also give better resolution when two surfaces are almost tangent.
It affects the criteria used for deciding which surface to split and which way,
because it becomes just as important to reduce the surface normal spread
quickly as to reduce the physical extent.

The two awkward cases which we have omitted are best handled by mul-
tiple representations. The analytic surfaces which are found in geometric
modelling systems also have parametric forms, and can then be converted
on, to a recursive division representation.

8.3. Reflection lines in a parametric surface

This interrogation determines the curves on a surface at which light rays are
reflected from some curve C in space to an eye at point E.
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It is used in validation of surfaces in car styling. It is also an example of
another paradigm for univariate interrogation, in which nilvariate enquiries
are made recursively until the necessary density is reached.

Suppose that C is a curve stored in exactly the same form as all the results
of our univariate enquiries described so far. It has a start point, which can
be used as auxiliary data for the nilvariate calculation of a reflection point.
Each point in the resulting set of points is a start point for a reflection curve,
and these should be taken one at a time.

Imagine a point moving along C from that start point. In fact C is
parametrized, and so we can formalize this movement by differentiating
C with respect to parameter. For high precision we should differentiate
the true curve underlying C, but for graphics purposes the piecewise linear
approximation will be quite adequate. The derivative is dC(t)/d¢t

As the point on C moves, the result of carrying out the nilvariate reflec-
tion also moves, and differentiating the reflection equation (equation (7.13)
above) gives dP/dC(t), and the chain rule then gives dP/dt. This is the
tangent to the reflection curve.

We can judge an appropriate increment in ¢ from the magnitude of dP/dt,
and can then step along C using a bracketting in ¢ to find points on the
reflection curve which satisfy the step-length rules. At each step we can use
the previous point on the curve as an initial estimate of the next, thus using
coherence to simplify the process.

This method is probably adequate for judging car body panels, where
the reflection curves do not hit the boundary, and where there is only one
reflection of each C.

However, a full algorithm needs to handle correctly the cases where re-
flections fall off the edges of the surface, and also those cases where the
reflection falls back on again. It also needs to cater for the bifurcation
which can happen when the surface has an inflexion.

The first problem is fairly straightforward, since tracing can just stop
when a boundary is reached. The second needs to be addressed by scanning
the boundary and identifying the points and ¢-values at which reflections of
C-points lie on the boundary.

The third requires the explicit evaluation of the parabolic lines of the
surface, which can then be treated in the same way as the boundary as a
source of start points for new bits of reflection curve.

Other interrogations using the same paradigm will require some other
specific internal ‘boundaries’ depending on the detail of their equations.

8.4. Geodesics across a surface

A geodesic is the path between two points of a surface which lies entirely
within the surface and whose length is least. Calculus of variations shows
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that it is the solution of a differential equation which states that the com-
ponent of curvature within the tangent plane (the geodesic curvature) is
zZero.

Geodesics map into straight lines during the flattening of a developable,
and so this calculation is applied in the determination of development. It is
also a good example of a differential equation interrogation.

Geodesics across an analytic surface Let the two ends be P} and P;.
We can determine the surface normals N; and N; at these points from the
gradient of the function defining the surface.

A surprisingly accurate cubic approximation to a geodesic is constructed
by postulating that the Bezier control points of this cubic are given by

By = (2P + P2)/3 + aNy + BNs, (8.1)
By = (Py +2P2)/3 + vN1 + 6Ny, (8.2)

and choosing the unknowns, a, 8, v and é from the conditions that the
tangent at each end must be perpendicular to the normal there, and that
the local osculating plane at each end contains the surface normal. From
these we can deduce that § = 23 and a = 2+, and thence that

2N1-N1 Nl-Nz Y _ —DN1/3
Ni-Ny 2N;-Ny || B8] | D-Ny/3

The matrix on the left is always nonsingular, and so this equation can be
solved to give the required control points.

The cubic may well depart from the surface in its interior. Evaluation of
the distance of points evaluated on it from the surface gives the first measure
of error.

The second measure of error is to evaluate a point at the parametric
centre of the curve, and project it back on to the surface using the nearest-
point algorithm. Then apply the same process as above, to determine an
approach direction and a departure direction at this central point. The
angle between these directions gives another measure of error. Let this
angle be 6, and the distance between the two ends be [. A lateral movement
of the midpoint (that is, a movement in the tangent plane there and in a
plane perpendicular to the line joining P; and P,) of [#/4 will approximately
correct this mismatch.

However, inserting additional points at the quarter points would probably
discover the need for a further correction: the best estimate of the correction
needed if we inserted really densely is [#/2. The number of points necessary
for insertion to give a solution accurate to a given tolerance e is the square
root of (estimated error/required error). These can be inserted either all
at once or in binary stages, with a relaxation at every step correcting the
positions.

(8.3)
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Geodesics across a parametric surface An exactly similar approach
can be taken over a parametric surface; the only additional stage is resolving
back the components of the vector B; — P; into components in the parameter
plane.

Because B; — P; lies in the tangent plane at Pj, it must be of the form

dP/du éu + dP/dv év.

To evaluate éu and v take the triple product of By — P first with dP/dv
and Njp, then with dP/du and Nj. These give scalar equations

u = [By — Py,dP/dv, N]/[dP/du,dP/dv, N],
v = [dP/du, By — P, N]/[dP/du,dP/dv, N].

The cubic is now set up in parameter space, and a similar procedure of
interpolating a central point and checking the accuracy is applied.

8.5. Lines of curvature

At any point of a surface (except an umbilic) there are two directions of
principal curvature. These are the directions in which the curvature of a
normal section is largest or least, and they are also directions in which there
is no twist.

A line of curvature is a curve whose tangent is always along a local direc-
tion of curvature. Tracing such a curve is essentially the numerical solution
of a first-order differential equation, and the obvious procedure is marching
along it.

The most convenient equation to solve is that corresponding to the no-
twist condition. Let T be a tangent to the curve at P, locally parametrized
by t, and N the surface normal. As a point moves along 7T, the surface
normal becomes

N(t+ 6ty = N + dN/dtét,
and the condition of no twist is that d/N/dt lies in the plane of N and T.

(N and T are always perpendicular, and so they always span a plane.)
[N,T,dN/dt] = 0. (8.4)

Lines of curvature across an analytic surface At the start point, P, of
the curve we evaluate the local surface normal, N, and the tensor d%f/dP?
which may be viewed as dN/dP.
The direction, T, we need to march in satisfies the equations
T-N = 0, (8.5)
[N,T,dN/dP-T] = 0. (8.6)

This is homogeneous in T', and so any multiple of a solution is also a
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solution. In particular, the exact reverse is also a solution. It is also quadratic
in T, and so we expect there to be two distinct solutions.

Unless the context gives a reason for choosing one of the four rather than
another, all four need to be treated equally, as start directions for lines of
curvature.

However, once a particular path has been chosen, further steps can always
be made in the direction most coherent with that of arrival at the current
point.

The actual solution of the equations is easily carried out by constructing
two vectors spanning the plane perpendicular to N and using coordinates
in this plane as two freedoms, thus automatically satisfying the first equa-
tion. The second becomes a homogeneous quadratic equation in the two
coordinates, whose solution ratios give the possible directions for T'.

Once a direction is determined, the same methods of step length control
apply as in previous curve interrogations.

The difference here is that there is no way of correcting back onto the true
curve in any absolute sense, as there was when intersecting with other sur-
faces. Now the effect of making steps along the tangent to the curve at each
point is to drift away from the true curve fairly rapidly. This is a familiar
effect in solution of ordinary differential equations, and the appropriate re-
sponse is the predictor—corrector paradigm (see Allgower and Georg (1993)).
Because we have to iterate at each point to get back on to the surface itself,
the corrector step gives no extra computing.

Lines of curvature across a parametric surface In this case we have
our vectors spanning the tangent plane ready-made in dP/du and dP/dv.
The equivalent equation to (8.5) is

Puu Duv ou _
[ bu 6v][¢vu o su | =0 (8.7)
where
d*P dP dP d’PdP dP
e = N —— . _N. .
¢ dudvdu du N du? du dv
d’p dP dP d’PdP dP
wo = Nio-— T — - N. .
¢ dudv du dv du? dv dv
d’PdP dP d’P dP 4P
wu = N —=—.—_N. - .=
¢ dv? du du dudvdu dv
2P P 2
b = . LPAP AP &P AP P
du du dv dudvdv dv

Correction of each step to minimize drift is still necessary even though
evaluation from the parameters ensures that generated points lie on the
surface.
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8.6. Summary of univariate interrogations

We have seen above examples of both algebraic equations, where accuracy
can be maintained at each step, independent of what has come before, and
of differential equations, whose tracing is possible from any start point, and
in which numerical errors will inexorably, if slowly, build up.

Marching methods work well for both in situations where the geometry
is actually well conditioned, and normal applications in manufacturing tend
to give these situations.

In marching methods we first need to identify the topology of the solution;
how many pieces the solution has, and how they interact with the boundary
of the surface(s). Then we step along each piece, choosing the step length
to match the local curvature of the result. Within each step we first find
a first approximation for the next point and then refine it. Refinement can
often use the refinement step from raycasting.

If, however, robustness is important the recursive subdivision techniques
are more appropriate to algebraic equations and the differential equations
should be cast ideally as boundary value, rather than initial value questions.

9. Bivariate interrogations

Within this section we are looking for results which map an entire surface
into a new form. The examples are concerned with graphics.

9.1. Rendering a surface

With the advent of workstations capable of displaying a wide range of
colours, it has become desirable to be able to compute exactly what colour
each pixel should be in an image of the objects our software deals with.

One technique for this is raytracing, which uses geometric optics to de-
termine what can be seen at each pixel.

The first level of this technique merely uses the nilvariate raycasting al-
gorithm to find out what point on a given surface lies at the intersection of
the surface with a ray through the eye and a given pixel.

In a typical model, with many surfaces, there is also the process of choos-
ing the nearest surface, as well as that of choosing the nearest intersection
on the given surface.

Once the nearest intersection has been found, its illumination is deter-
mined by applying an illumination model, which uses the positions and
colours of the lights, the positions of the surface point and the eye, the sur-
face normal, and the various reflection coefficients of the material of which
the surface purports to be made. Such models typically use separate models
of diffuse and specular reflection, and, if the coeflicients are well-chosen, can
give surprisingly recognizable impressions of different materials.
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The process may be taken further, by starting either a reflection ray or
a refraction ray (or both) from the visible surface point, and repeating the
process to find out what can be seen reflected (or refracted) in the surface.

This capability is usually shown off in images of glass or shiny metal
objects. It just uses the same raycasting code again.

Finally, for duller materials, shadows can also be determined using the
same code. A point on a surface is illuminated if it is visible from the light.
A ray can be fired from the light towards each point visible from the eye. If
the first intersection is the visible point it is illuminated, if not, not.

Multiple lights just means lots more calls to the raycaster.

This technology runs out of steam when diffuse reflections from one sur-
face to another dominate the illumination, as in images of domestic interior
scenes. A simultaneous solution for the illumination levels on all surfaces
then needs to be invoked. This technique is called Tuminosity’ (Hall, 1990).

Nor is raycasting the fastest technique with modern workstations which
have significant amounts of special purpose hardware designed for rendering.
These displays are driven, not pixel by pixel, but facet by facet, where facets
are small pieces of surface, small enough to be treated as plane.

In order to keep the number of facets small, while still giving the impres-
sion of a smooth surface, there are two ways in which graphics workstations
typically cheat. The first is called Gouraud shading, in which a true surface
normal is evaluated at each vertex of each facet; the illumination model is
applied there, and the illumination value is interpolated linearly across the
facet. The second is called Phong shading. Again a true surface normal
is evaluated at every vertex, and then an effective surface normal vector is
interpolated across the facet, with the illumination model being applied at
every pixel. The application of such methods can be detected in images
which have smooth surfaces with polygonal edges.

In order to drive such powerful displays, it is necessary to split each surface
up into facets.

9.2. Facetting a surface

One technique, applicable to both parametric and recursive division surfaces,
is to base the facetting on the parametric structure of the surface.

In the simplest parametric case, a regular subdivision is made on a regular
parametric grid, giving four-sided facets. If any facet is too far out of plane,
it is just subdivided further.

In the recursive subdivision case, each piece of surface is examined for
planarity. If it is flat enough it is issued as a facet, if not it is subdivided
further. The planarity test can use surface normal hulls or else it can set
up an approximate surface normal for an entire piece and just measure the
upper bound on thickness along this direction.
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Another approach is to divide the surface into triangular pieces, triangles
being flat by definition. The problem here is that some parts of the surface
will require small triangles, others can accept large ones, if the criterion
on triangle size is economically matching the true surface within a stated
tolerance.

Such a triangulation can be used for communicating models to certain
‘rapid prototyping’ machines, and also as a discretization for certain types
of aerodynamic or electromagnetic analyses, as well as for graphics.

A method which has been used in mesh generation for finite-element anal-
ysis (Cavendish, 1974) is first to create vertices all round the boundary at
an appropriate density, then to create a Delaunay triangulation of those ver-
tices, and finally to insert additional vertices, always updating the Delaunay
triangulation, until every triangle is small enough.

The interesting part of this process is that, while many different optimality
criteria give the same triangulation of a set of points in two dimensions, there
is no clean equivalent in three dimensions. It is better therefore to do the
triangulation in the parameter plane.

However, the distortion introduced by the local affineness of the mapping
from parameter space to real space means that a triangulation which is
Delaunay in parameter space is likely to be a very poor one when mapped
into object space. It is necessary to compensate for this distortion.

There are just three places within the overall process where compensation
is necessary. Within the Delaunay process itself there is a ‘swap test” which
decides whether a pair of triangles forming a quadrilateral should be swapped
to split the quadrilateral by its other diagonal.

Then there is the decision as to whether a triangle is acceptable in the
final tesselation, or whether it should have an extra vertex inserted in it,
and, finally, if an extra vertex is to be created, there is the computing of
where it should go.

In each case, the local configuration can be mapped from parameter space
into an orthonormal coordinate system which can be thought of as being of
the tangent plane at the centroid of the three or four points concerned.

This gives well proportioned triangles, even on surfaces where d P/du and
dP/dv vary widely over the surface and are far from orthonormal.

The final step, of making the triangles’ proportions and densities fit the
local surface curvatures, is achieved by using, not an orthonormal system in
the tangent plane, but a system which is orthonormal with respect to the
sign-corrected second derivative matrix.

Take the principal curvatures and principal directions of curvature at a
point on the surface, and scale the vectors by the square roots of the mag-
nitudes of the radii of curvature. These two vectors are now conjugate with
respect to an ellipse which is either the Dupin indicatrix, or else has the
same maximum deflection from the tangent plane on both sides. Under the
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necessary final transformation, this ellipse is the image of a circle. If the
maximum deflection from the tangent plane is the required tolerance, it is
the image of a unit circle. Any triangle inscribed in it has an error no greater
than the tolerance, and if the triangle is well enough shaped to include its
(mapped) circumcentre, the error is equal to the specified tolerance.
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